1 research outputs found

    Limited feedback MIMO techniques for temporally correlated channels and linear receivers

    Get PDF
    Advanced mobile wireless networks will make extensive use of multiantenna (MIMO) transceivers to comply with high requirements of data rates and reliability. The use of feedback channels is of paramount importance to achieve this goal in systems employing frequency division duplexing (FDD). The design of the feedback mechanism is challenging due to the severe constraints imposed by computational complexity and feedback bandwidth restrictions. This thesis addresses the design of transmission strategies in both single-user and multi-user MIMO systems, based on compact feedback messages. First, recursive feedback mechanisms for single-user transmission scenarios are proposed, including stochastic gradient techniques, deterministic updates based on Givens rotations and low computational complexity schemes based on partial update filtering concepts. Thereafter, channel feedback algorithms are proposed, and a convergence analysis for static channels is presented. These algorithms can be used to provide channel side information to any multi-user MIMO solution. A limited-feedback decentralized multi-user MIMO solution is proposed, which avoids the need for explicit channel feedback. A feed-forward technique is proposed, which allows our methods to operate in presence of feedback errors. The performance of all the proposed algorithms is illustrated via link-level simulations, where the effect of different parameter values is assessed. Our results show that the proposed methods outperform existing limited-feedback counterparts over a range of low to medium mobile speeds, for moderate antenna array sizes that are deemed practical for commercial deployment. The computational complexity reduction of some of the proposed algorithms is also shown to be considerable, when compared to existing techniques
    corecore